2,538 research outputs found

    Multiresolution spatiotemporal mechanical model of the heart as a prior to constrain the solution for 4D models of the heart.

    Get PDF
    In several nuclear cardiac imaging applications (SPECT and PET), images are formed by reconstructing tomographic data using an iterative reconstruction algorithm with corrections for physical factors involved in the imaging detection process and with corrections for cardiac and respiratory motion. The physical factors are modeled as coefficients in the matrix of a system of linear equations and include attenuation, scatter, and spatially varying geometric response. The solution to the tomographic problem involves solving the inverse of this system matrix. This requires the design of an iterative reconstruction algorithm with a statistical model that best fits the data acquisition. The most appropriate model is based on a Poisson distribution. Using Bayes Theorem, an iterative reconstruction algorithm is designed to determine the maximum a posteriori estimate of the reconstructed image with constraints that maximizes the Bayesian likelihood function for the Poisson statistical model. The a priori distribution is formulated as the joint entropy (JE) to measure the similarity between the gated cardiac PET image and the cardiac MRI cine image modeled as a FE mechanical model. The developed algorithm shows the potential of using a FE mechanical model of the heart derived from a cardiac MRI cine scan to constrain solutions of gated cardiac PET images

    Artificial Intelligence Through the Eyes of the Public

    Get PDF
    Artificial Intelligence is becoming a popular field in computer science. In this report we explored its history, major accomplishments and the visions of its creators. We looked at how Artificial Intelligence experts influence reporting and engineered a survey to gauge public opinion. We also examined expert predictions concerning the future of the field as well as media coverage of its recent accomplishments. These results were then used to explore the links between expert opinion, public opinion and media coverage

    Book Reviews

    Get PDF

    The Spectrum of Yang Mills on a Sphere

    Full text link
    In this note, we determine the representation content of the free, large N, SU(N) Yang Mills theory on a sphere by decomposing its thermal partition function into characters of the irreducible representations of the conformal group SO(4,2). We also discuss the generalization of this procedure to finding the representation content of N=4 Super Yang Mills.Comment: 18 pages v2. references added. typos fixe

    Conventional versus automated measurement of blood pressure in primary care patients with systolic hypertension: randomised parallel design controlled trial

    Get PDF
    Objective To compare the quality and accuracy of manual office blood pressure and automated office blood pressure using the awake ambulatory blood pressure as a gold standard

    Simulating High-Dimensional Multivariate Data using the bigsimr R Package

    Full text link
    It is critical to accurately simulate data when employing Monte Carlo techniques and evaluating statistical methodology. Measurements are often correlated and high dimensional in this era of big data, such as data obtained in high-throughput biomedical experiments. Due to the computational complexity and a lack of user-friendly software available to simulate these massive multivariate constructions, researchers resort to simulation designs that posit independence or perform arbitrary data transformations. To close this gap, we developed the Bigsimr Julia package with R and Python interfaces. This paper focuses on the R interface. These packages empower high-dimensional random vector simulation with arbitrary marginal distributions and dependency via a Pearson, Spearman, or Kendall correlation matrix. bigsimr contains high-performance features, including multi-core and graphical-processing-unit-accelerated algorithms to estimate correlation and compute the nearest correlation matrix. Monte Carlo studies quantify the accuracy and scalability of our approach, up to d=10,000d=10,000. We describe example workflows and apply to a high-dimensional data set -- RNA-sequencing data obtained from breast cancer tumor samples.Comment: 22 pages, 10 figures, https://cran.r-project.org/web/packages/bigsimr/index.htm

    Distinct Clinical and Pathological Features Are Associated with the BRAFT1799A(V600E) Mutation in Primary Melanoma

    Get PDF
    The BRAFT1799A mutation encodes BRAFV600E that leads to activation of the mitogen-activated protein kinase pathway. This study aimed to assess the clinico-pathological features of primary invasive melanomas containing the BRAFT1799A mutation. Patients (n=251) with invasive primary melanomas from Australia were interviewed and examined with respect to their melanoma characteristics and risk factors. Independent review of pathology, allele-specific PCR for the BRAFT1799A mutation, immunohistochemical staining with Ki67, and phospho-histone-H3 (PH3) were performed. The BRAFT1799A mutation was found in 112 (45%) of the primary melanomas. Associations with the BRAFT1799A mutation (P<0.05) were as follows: low tumor thickness (odds ratio (OR)=3.3); low mitotic rate (OR=2.0); low Ki67 score (OR=5.0); low PH3 score (OR=3.3); superficial spreading melanoma (OR=10.0); pigmented melanoma (OR=3.7); a lack of history of solar keratoses (OR=2.7); a location on the trunk (OR=3.4) or extremity (OR=2.0); a high level of self-reported childhood sun exposure (OR=2.0); ≤50 years of age (OR=2.5); and fewer freckles (OR=2.5). We conclude that the BRAFT1799A mutation has associations with host phenotype, tumor location, and pigmentation. Although implicated in the control of the cell cycle, the BRAFT1799A mutation is associated with a lower rate of tumor proliferation

    Single cell analysis reveals satellite cell heterogeneity for proinflammatory chemokine expression

    Get PDF
    Background: The expression of proinflammatory signals at the site of muscle injury are essential for efficient tissue repair and their dysregulation can lead to inflammatory myopathies. Macrophages, neutrophils, and fibroadipogenic progenitor cells residing in the muscle are significant sources of proinflammatory cytokines and chemokines. However, the inducibility of the myogenic satellite cell population and their contribution to proinflammatory signaling is less understood.Methods: Mouse satellite cells were isolated and exposed to lipopolysaccharide (LPS) to mimic sterile skeletal muscle injury and changes in the expression of proinflammatory genes was examined by RT-qPCR and single cell RNA sequencing. Expression patterns were validated in skeletal muscle injured with cardiotoxin by RT-qPCR and immunofluorescence.Results: Satellite cells in culture were able to express Tnfa, Ccl2, and Il6, within 2 h of treatment with LPS. Single cell RNA-Seq revealed seven cell clusters representing the continuum from activation to differentiation. LPS treatment led to a heterogeneous pattern of induction of C-C and C-X-C chemokines (e.g., Ccl2, Ccl5, and Cxcl0) and cytokines (e.g., Tgfb1, Bmp2, Il18, and Il33) associated with innate immune cell recruitment and satellite cell proliferation. One cell cluster was enriched for expression of the antiviral interferon pathway genes under control conditions and LPS treatment. Activation of this pathway in satellite cells was also detectable at the site of cardiotoxin induced muscle injury.Conclusion: These data demonstrate that satellite cells respond to inflammatory signals and secrete chemokines and cytokines. Further, we identified a previously unrecognized subset of satellite cells that may act as sensors for muscle infection or injury using the antiviral interferon pathway

    PglB function and glycosylation efficiency is temperature dependent when the pgl locus is integrated in the Escherichia coli chromosome.

    Get PDF
    BACKGROUND: Campylobacter is an animal and zoonotic pathogen of global importance, and a pressing need exists for effective vaccines, including those that make use of conserved polysaccharide antigens. To this end, we adapted Protein Glycan Coupling Technology (PGCT) to develop a versatile Escherichia coli strain capable of generating multiple glycoconjugate vaccine candidates against Campylobacter jejuni. RESULTS: We generated a glycoengineering E. coli strain containing the conserved C. jejuni heptasaccharide coding region integrated in its chromosome as a model glycan. This methodology confers three advantages: (i) reduction of plasmids and antibiotic markers used for PGCT, (ii) swift generation of many glycan-protein combinations and consequent rapid identification of the most antigenic proteins or peptides, and (iii) increased genetic stability of the polysaccharide coding-region. In this study, by using the model glycan expressing strain, we were able to test proteins from C. jejuni, Pseudomonas aeruginosa (both Gram-negative), and Clostridium perfringens (Gram-positive) as acceptors. Using this pgl integrant E. coli strain, four glycoconjugates were readily generated. Two glycoconjugates, where both protein and glycan are from C. jejuni (double-hit vaccines), and two glycoconjugates, where the glycan antigen is conjugated to a detoxified toxin from a different pathogen (single-hit vaccines). Because the downstream application of Live Attenuated Vaccine Strains (LAVS) against C. jejuni is to be used in poultry, which have a higher body temperature of 42 °C, we investigated the effect of temperature on protein expression and glycosylation in the E. coli pgl integrant strain. CONCLUSIONS: We determined that glycosylation is temperature dependent and that for the combination of heptasaccharide and carriers used in this study, the level of PglB available for glycosylation is a step limiting factor in the glycosylation reaction. We also demonstrated that temperature affects the ability of PglB to glycosylate its substrates in an in vitro glycosylation assay independent of its transcriptional level
    • …
    corecore